Structural investigation of the molybdenum site of the periplasmic nitrate reductase from Thiosphaera pantotropha by X-ray absorption spectroscopy.

نویسندگان

  • B Bennett
  • J M Charnock
  • H J Sears
  • B C Berks
  • A J Thomson
  • S J Ferguson
  • C D Garner
  • D J Richardson
چکیده

The molybdenum centre of the periplasmic respiratory nitrate reductase from the denitrifying bacterium Thiosphaera pantotropha has been probed using molybdenum K-edge X-ray absorption spectroscopy. The optimum fit of the Mo(VI) EXAFS suggests two ==O, three -S- and either a fourth -S- or an -O-/-N- as molybdenum ligands in the ferricyanide-oxidized enzyme. Three of the -S- ligands are proposed to be the two sulphur atoms of the molybdopterin dithiolene group and Cys-181. Comparison of the EXAFS of the ferricyanide-oxidized enzyme with that of a nitrate-treated sample containing 30% Mo(V) suggests that the Mo(VI)-->Mo(V) reduction is accompanied by conversion of one ==O to -O-. The best fit to the Mo(IV) EXAFS of dithionite-reduced enzyme was obtained using one ==O, one -O- and four -S-/-Cl ligands. The periplasmic nitrate reductase molybdenum co-ordination environment in both the Mo(VI) and Mo(IV) oxidation states is distinct from that found in the membrane-bound respiratory nitrate reductase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha.

The napEDABC locus coding for the periplasmic nitrate reductase of Thiosphaera pantotropha has been cloned and sequenced. The large and small subunits of the enzyme are coded by napA and napB. The sequence of NapA indicates that this protein binds the GMP-conjugated form of the molybdopterin cofactor. Cysteine-181 is proposed to ligate the molybdenum atom. It is inferred that the active site of...

متن کامل

Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster.

The phototrophic bacterium Rhodobacter sphaeroides DSM 158 is able to reduce nitrate to nitrite by means of a periplasmic nitrate reductase which is induced by nitrate and is not repressed by ammonium or oxygen. Recently, a 6.8 kb PstI DNA fragment carrying the napABC genes coding for this periplasmic nitrate-reducing system was cloned [Reyes, Roldán, Klipp, Castillo and Moreno-Vivián (1996) Mo...

متن کامل

Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha.

Use of Clark-type electrodes has shown that, in cells of Thiosphaera pantotropha, the nitrous oxide reductase is active in the presence of O2, and that the two gases involved (N2O, O2) are reduced simultaneously, but with mutual inhibition. Reduction of nitrate, or nitrite, to N2O under aerobic conditions involves NO as an intermediate, as judged by trapping experiments with the ferric form of ...

متن کامل

The role of the essential sulfhydryl group in assimilatory NADH: nitrate reductase of Chlorella.

Incubation of the complex metalloflavoprotein, assimilatory nitrate reductase with N-ethylmaleimide, or a spin-labeled analog, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl, resulted in a time-dependent inactivation of NADH:nitrate reductase and NADH: cytochrome-c reductase activity with no effect on reduced methyl viologen:nitrate reductase activity. Inactivation of the enzyme, which could be ...

متن کامل

Transfer of Thiosphaera pantotropha to Paracoccus denitrificans.

Comparative sequence analysis of in vitro-amplified 16S rRNA genes of Thiosphaera pantotropha GB17T (T = type strain) and Paracoccus denitrificans LMG 4218T revealed identical 16S rRNA primary structures for the two organisms. The level of overall DNA similarity of Thiosphaera pantotropha GB17T and P. denitrificans DSM 65T is 85%, as determined by quantitative DNA-DNA hybridization. Therefore, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 317 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1996